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Abstract--The objective is the theoretical and numcrical simulation of largc-strain phenomena of
rubber-like shclls by means of shear deformation models. The development starts with a general
applicable shell model constructed on the basis of a quadratic displaccment approximation which
involves two thickness stretching parameters. This model is then coupled with incompressible
material models of Mooney- Rivlin and neo-Hookean types. Material incompressibility is dcscribcd
by two-dimensional constraints considered at the elcment level as subsidiary conditions. A special
care is given to the stress prediction in the presence of large-strains. After transformation of the
theoretical model into an incremental formulation a four-nodc isoparamctric finite elcmcnt is
derived. Examples are finally given to demonstrate the ability of this model to deal "ith vcry strong
deformations and to predict the related stresses. ( 1997 Elsevier Science Ltd.

I. INTRODCCTION

Shells composed particularly of rubber-like materials are very flexible structures able to
perform, besides finite rotations, large strains. Finite rotation phenomena are characterized
by very large rotations of the shell director while thickness changes are supposed to be
negligible during the deformation process. A lot of works have been dedicated in the last
decade to the computer simulation of finite rotations. Thus a large number of efTIcient finite
rotation models [see Simo et al. (1989, 1990a); Gruttmann et al. (1989) ; Gebhardt (1990) ;
Ba~ar and Ding (1990) ; Buchter and Ramm (1992) ; Sansour and Butler (1992) ; Ba~ar et
al. (1992)] are now available, developed according to various approaches. Attention has
also been given to the inclusion of transverse normal strains [see Kuhlhorn and Schoop
(1992): Simo et al. (I 990b); Buchter et al. (1994): Ba~ar and Ding (1994); Sansour
(1995)] and the twisting degrees of freedom [see Fox and Simo (1992); Simo (1993);
Ibrahimbegovic and Frey (1994)], the last aspect being relevant for the analysis of shells
with geometry intersections.

After all these developments the question now arises what is to be achieved additionally
to simulate structures with large strains. This question will be treated here primarily for
rubber-like shells characterized by material incompressibility starting however from a
general applicable kinematic model. Here we emphasize that, in geometrical sense, large­
strain phenomena are characterized by significant thickness changes. Evidently. such defor­
mations may involve also finite rotations, which are understood to be an accompanying
effect of large strains. Now the question is, how to proceed to simulate shells with large
strains? Research aspects being relevant for the treatment of this topic cover: the inclusion
of transverse normal strains ;'" by a suitable kinematic model. the consideration of the
incompressibility condition and a consistent two-dimensional modeling of strain energy
density. the last two aspects being closely related to modeling of the material behavior.

We now deal with the first aspect. In classical shell models [Ba~ar and Kratzig (1985)]
the deformed shell continuum r*(8 i

) is described by a linear expression in thickness coor­
dinate f)' postulating, in addition, an inextensible director d,

r* = r+O'd" d, 'd, = I ...... MS.

This model with five independent parameters (M 5) implies the vanishing of transverse
normal strains ;',1. Many efforts have been devoted to the extension of the classical shear
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deformation model (M5) to consider the thickness changes [see Lo et al. (1977); Kuhlhorn
and Schoop (1992); Sansour (1995)]. To take account for ID the above expression is to be
augmented at least by a single stretching parameter Ie to be considered for numerical
convenience [Simo et al. (1990b), Ba~ar and Ding (1994)] through a multiplicative decompo­
sition as

The so resulting six parametric model performs very well for incompressible materials, but
may lead to numerical difficulties when it is applied to compressible shells [see Buchter et
al. (1994) ; Ba~ar and Ding (1994)]. This deficiency disappears automatically if a quadratic
stretching parameter U, is additionally considered:

It is, of course. possible to use a vectorial quantity u = u,a' +u,d, as quadratic term
leading to

but numerical studies on compressible structures [Ba~ar and Ding (1994)] have shown that
the inclusion of Ux is irrelevant for a significant improvement of the analysis accuracy and
superfluous concerning numerical stability. If the shell is incompressible and sufficiently
thin, the analysis may be achieved even by the linear model M6 without significant loss of
accuracy. Accordingly, also the third component U, turns out not to be of major importance
for incompressible and thin shells. A further improvement of the kinematic approach is not
of practical significance. This would lead to very complicated shell equations. On the other
hand. it is well-known [Ba~ar and Ding (1995)] that multilayer models based on a layerwise
application e.g. of M6 are decisively superior to any refined single layer model concerning
different aspects e.g. the prediction of stress concentrations. Finally, we cite the kinematic
model due to Makowski and Stumpf (1989)

with a parameter i. = i.(OI) where the role of transverse strains seems to be overestimated.
The kinematic models discussed above permit the consideration of shear deformations

with different accuracy level. It is. of course. possible to use them, as is the case e.g. in
Makowski and Stumpf (1989) and Ba~ar and Ding (1995), by adopting the so-called
extended Kirchhoff-Love hypothesis which implies a deformation behaviour depending
solely upon the midsurface position vector r = r(lF) for incompressible materials. The basic
idea of this hypothesis is the neglection of the shear strains <i'" = 0) while transverse normal
strains I" are. in contrast to its classical version. considered.

Kirchhoff-Love type assumptions have been already used in the analysis of rubber­
like shells to construct general applicable shell models [Makowski and Stumpf (1989)] and
recently to achieve finite element formulations. A general applicable Kirchhoff-Love type
model has been presented also in Schieck et al. (1992), where the theoretical formulation
has been additionally transformed into an efficient triangular shell element. A particularity
of the derivation is that two-dimensional (20) strains are introduced directly by series
expansions without introducing a kinematic approach. Displacement-based finite elements
on the basis of general applicable shell theory have been also proposed later in Ba~ar and
Ding (1996). In contrast to Schieck et al. (1992) the development has been however achieved
starting from a kinematic approach providing the consistency of 20 strain fields. In this
work attention is also given for the calculation of the stresses.

Shear deformations ;'" have been omitted in the above cited models. These defor­
mations may however influence the response significantly for thick shells but particularly
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for those consisting of dissimilar material layers. Shear deformation models are also attract­
ive since they provide a more systematical finite element formulation. In the field of large
strains shear deformations have been considered only in few theoretical formulations [see
Taber (1985)] and very rarely in developing finite elements. From this overview it may be
deduced that there is a serious lack of general applicable shear-deformation models on
large-strain analysis of incompressible shells.

Rubber-like materials can be modelled like hyperelastic materials through the strain
energy density. A formulation widely used for this purpose is the Mooney-Rivlin model
involving the neo-Hookean model as a special case. These models have been already
adopted in developing general applicable finite elements [Schiek et al. (1992); Ba~ar and
Ding (1996)]. A further possibility is the use of Ogden model, which has been mainly
employed in membrane shell models [Wriggers and Taylor (1990) ; Gruttman and Taylor
(1992)]. A disadvantage of this model is the fact that it requires the transformation of the
actual strains into principal stretches. The incorporation of the incompressibility condition
into strain energy densities causes essentially no difficulties. The problem is the trans­
formation of the resulting expressions into a consistent 20 formulation. Corresponding
expressions can be found in Simmonds (1986) for axisymmetric deformations and in Schieck
(1989), Ba~ar and Ding (1996) for arbitrary bending deformations.

The objective of this contribution is the development of a shear-deformation theory
for large strain shell analysis and its transformation into a finite element mode. To achieve
a formulation applicable both to compressible and incompressible materials the dis­
placement field is described by a quadratic polynomial in thickness coordinate using a
multiplicative decomposition for the first order term. This kinematic model is then applied
to rubber-like shells simulating the material behavior by Mooney-Rivlin and neo-Hookean
models. The incompressibility condition is transformed into 20 constraints which are
considered at the element level for the elimination of the stretching parameters. Three­
dimensional (3D) energy density is finally replaced by a 20 formulation presenting the
starting point of the succeeding finite element formulation.

2. GEOMETRY OF THE U'\IDEFORMED STATE

In this paper, shell theory relations will be presented in tensor notation. Latin indices
represent the number I, 2, 3 and the Greek ones the number I, 2. For convenience the
essential notations to be used in the derivation are firstly summarized in the following:

X'
ij = i J

8'
( .. ')x

(.: .),( ... )

e,fj
C;i.i

k ~ eijk

orthogonal Cartesian coordinates
unit base vectors associated with X'
convected curvilinear coordinates of the shell continuum
partial derivative with respect to the curvilinear coordinates IF of the
middle surface f
geometrical elements of the undeformed and deformed state
permutation tensor associated with f'
permutation tensor associated with the deformed coordinate 8'. X'.

In this section, the attention is focused to the undeformed shell continuum, the geometrical
elements (Fig. I) of which are to be presented with the suffix (.: .). Let r = r(EF) be the
position vector of points P of the middle surface f, where IJ> are curvilinear coordinates.
Using r the geometrical elements of f can be evaluated by the usual manner. For later use
we introduce

the base vectors: (I)

the unit normal vector:
Q G aI x a~
n, = a, = - -

'v i!
(2)

(3)
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undefarmed state

x'

deformed state

Fig. I. Deformed and undeformed shell continuum, kinematic variables.

the determinant: cI = lei,I!I,

the ClIrl'utlire tensor: h'/i = - a, ."'.Ii = a,./! .",.

(4)

(5)

We now consider an arbitrary point P* of the shell continuum. Let e' be the distance of
l* from the middle surface F. measured in the ",-direction. Thus. the position vector f* of
pC * can be represented as

(6)

from which following expressions can be derived for the geometrical variables associated
with l*:

the base vectors

(7)

(8)

the metric tensor

the volume element

with the determinant

d k' = v,e) dOl dfF dO'.

(9)

(10)

(II)

(12)
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and finally the determinant of the shifter Jl~

with the mean curvature H and the Gaussian curvature K

1691

(13)

(14)

( 15)

In the deformed state, geometrical variables will be presented without any mark. Thus.
without suffix (.: .), the expressions (1-5) and (12. 13) hold for the deformed state. We.
however. note that expressions similar to those given in (7-11) and (14) do not hold for
the deformed case. since in the present development the position vector r* will be described,
as distinct from (6). by a quadratic series expansion.

3. DEFORMATION STATE

The aim of a shell theory is the simulation of the deformation behavior of the shell
continuum by 20 displacement and strain variables to be introduced in this section. In
dealing with large strains emphasis is to be given to an adequate consideration of transverse
strains ~'1" Particularly, in the case of rubber-like materials. transverse strains ~'11 playa
very important role in the analysis as they are related. due to the incompressibility condition.
directly to shear deformations ~',1 and the tangential strains i',/I' Accordingly the main thrust
in the large-strain analysis is the uniform approximation of the three groups of deformations
i',/I, ~"1 and ~'1' in the internal potential energy starting from a suitable kinematic approach
of the displacement field.

Let r* = r*(8') be the position vector of an arbitrary point p* of the deformed shell
continuum. In the present derivation. r* is supposed to be described by a quadratic series
expansion in thickness coordinate 0' (Fig. I):

with a director d1 constrained by the inextensibility condition

d, . d, = I --> d,., . d, = O.

(16)

(17)

Accordingly. the kinematic model (16) involves nine unknown parameters. The multi­
plicative decomposition of the first-order term in eqn (16) originally suggested by Simo et
al. (I 990b) provides the advantage that the numerically sensitive stretching parameter) is
decoupled from d, subjected in view of eqn (17) to pure rotations. A further advantage is
that. for ;. = I and u = 0, the kinematic model (16) reduces to that commonly adopted in
finite rotation models [Ba~ar et al. (1992)] which are therefore involved in the present
formulation as a special case.

Our next goal is the definition of 20 strain variables on the basis of the Green's strain
tensor

}' = "gO, 'x' gOJ = I(q _(J.)gO' 'x' go.1
ill IC) 2 • II ,Jll v::J •

where the base vectors gi are according to eqn (16) given by

(18)
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(19)

(20)

Inserting the above results together with egn (7) in egn (18) delivers

,

I W)":', ,/1
n=O

I
~ 1,.11/

L «())"'}'"
II/=()

~ , In ~L W)"'''lx3
111=0

I m

I un"'}, 33
m=O

(21)

with 20 strains ~'x/i(n = O. 1,2) and ~:il(m = O. I) subjected to the following constraints:
tangential strains

transverse shear strains

(25)

(26)

transverse normal strains

(27)

(28)

In view of the approximation of gx by egn (19), series expansions for tangential
components }'x/i have been broken down in (21) after the quadratic 8 ' -term while "lx3 and
::11 have been. in accordance with egn (20), approximated by linear expressions in 8 3

• The
notation (. '! .) used for 2D strains ~, 'J will be used systematically in the subsequent derivation
to indicate coefficients of power series in 8' in the following sense:

(29)

By means of (18-20). it can easily be confirmed that the expressions given in (22-28) for
2D strains can be obtained according to the above rule.

The new variable U, occurring in eqn (28) is defined by the decomposition of the vector
u with respect to the deformed basis (ax' d, ) as

(30)

From egns (27) and (28) it can easily be seen that U, describes together with ;. through­
thickness stretchings completely. On the contrary. the tangential components ux have no
influence on transverse normal strains }'". This demonstrates the mechanical significance
of the decomposition (30) with respect to the deformed basis. The decomposition (30)
permits furthermore to transform the initial approach (16) into a number of simplified
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Table I. Various theoretical models and their notations
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Theoretical
model

Kinematic
assumption

Constraints

SD-9

r* = r+II'i.d,+W')'u

SD-7

r* = r - (I '(i. + ()'II,Jd,

d,' d, = 1 or d, = d,(tiI,)

SD-6

r* = r+IiJi,d,

2D strains =2)0',

Independent
variables

n = O. 1.2; k = O. 1

9:r.tiI,·i..u

7 : r. til ,. u,

11 = O. 1.:2: k = O. I

for compressible materials
7 : r. til ,. i.. u,

for incompressible materials
5: r. 1jJ,

n = O. 1: k = 0

6 : r. til ,. i.

5:r.tiI,

models being of significance for numerical applications. If compressible materials are
considered then the tangential components u, can be suppressed without a significant loss
of accuracy [Ba~ar and Ding (1994)], but the inclusion of u, is in this case essential to
achieve lock-free models able to consider transverse strains fJ" For incompressible materials
u, is not needed as a remedy against locking and can also be neglected. Thus, the analysis
can be carried out in this case by means of the linear expression r* = r +e'Ad, evaluating
the stretching parameter ;. through the incompressibility condition. For the development of
numerical models applicable both to compressible and incompressible materials a kinematic
model involving at least a scalar-valued parameter U, as a quadratic term is however
indispensable. Simplified models discussed above are collected in Table I where the
notations (e.g. 50-9) indicate the number of unknown parameters involved in each indi­
vidual model.

Concludingly we construct according to eqn (18) the mixed components r1 of the strain
tensor. This yields by using eqns (10) and (2\) within the present accuracy level

(31 )

where mixed components of 20 strains are defined with respect to the midsurface basis.
e.g. as:

(32)

4. KINEMATIC RELATIONS

Kinematic relations (22-28) are now to be transformed in component form. As we
prefer here the isoparametric finite element formulation, the vectors appearing in eqn (16)
will be defined with respect to the fixed orthonormal Cartesian basis i,. By denoting the
resulting components by upper case letters we then have

r = Xiii' d, = D'i" U = Viii

where the new components V' are related to the previous ones u' by

(33)
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Table 2. Kinematic relations and lI1compresslbliIty conditions

Kinematic relations:

Incompressibility conditions:

(34)

with all = flo and d, being the base vectors of the deformed midsurface. Inserting now eqn
(33) as well as the expressions r = X'i"~ (I, = D, = IVii

J
into (22-28). we easily obtain the

kinematic relations summarized in Table 2 where 6'1 is the well-known Kronecker symbol.
The inextensibility condition (17) being a nonlinear relation in terms of the unknown

variable d, causes necessarily numerical difficulties if large rotations are involved in the
analysis. To ensure a priori satisfaction of the constraint (17) and thus to avoid its explicit
consideration a number of efficient procedures such as Euler angles [Ramm (1976) ; Ba~ar
ct at. (1993)]. updated formulation [Simo et at. (l990b)] etc. are available in literature.
Here we prefer to use Euler angles l/Jx (Fig. 2) determining the director d, with respect to
the fixed basis i

J
as

(35)

In the FE-procedure l/Jx will be used as primary variables. The shape functions of the
director D I are then to be constructed by means of the above constraints (35) implying the
inextensibility condition d, . d, = I. In this context we note that updated formulation with
a three parametric rotation vector becomes more advantageous than the above procedure
if shells with geometry intersections are considered. This aspect will be however treated in
a further work.

x1

Fig. 2. Definition of the rotation variables t/J ,.
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5. STRAIN INVARIANTS Al'<D Il'<COMPRESSIBILlTY CONDITIONS

All equations presented above are valid for arbitrary materials. We now confine our
attention to rubber components characterized by incompressibility, that is, preservation of
volume during deformation. The related deformations are called isochoric. Thus we shall
introduce in this section first the strain invariants II, 12 needed for the formulation of the
corresponding strain energy density. The next goal will be the transformation of the
incompressibility condition 13 = I into 20 constraints compatible with the kinematic
approach (16). This set of equations is needed for the elimination of the stretching par­
ameters ;. and 113 presenting in this case dependent quantities.

By means of the abbreviations

A = 2y~, N = A+4D. Q _ .,3 .. "
- 1~/3~

S+N
R=--­

I+N
(36)

to be used systematically in subsequent derivations the first two strain invariants II and 12

are given by

Similarly. the incompressibility condition 13 = I can be transformed into the form

(37)

(":n =
I I S+N

--R=- --
2 21+/''1'

(38)

which will be used for the elimination of 1'33 in the strain energy density (43). We note that.
in eqn (36), S vanishes for }"3 = 0 while the definitions (36) for A, D. Nand R preserve also
in this case their validity.

In view of (13) equation 13 = I may also be replaced equivalently by the relation

- -

...j 9 = (g 1 X g2) • g3 = -Jg = (g 1 XgJ .g3' (39)

To transform (39) into 20 conditions we express the base vectors gj and g, according to
eqns (19), (20) and (7). Then we equate in the resulting series expansion in 83 the first two
coefficients to zero. By considering eqn (30) this procedure leads to the following two
constraints.

(40)

(41 )

which will be used at the element level for the elimination of the stretching parameter i. and
113' The above result (41) emphasizes the suitability of the decomposition (30) which permits
the evaluation of 113 independently of the tangential components 11,. Both relations (40) and
(41) have been transformed by using eqn (33) in component relations given in Table 2.

6. INTERNAL POTEl'<TIAL ENERGY

In this section attention is again focused to rubber-like materials with the aim to
derive for the internal potential energy a consistent 20 expression. Thus the later FE­
implementation can be carried out by means of a formulation the consistency of which as
20 approximation is ensured. This will lead to a so-called shell theory FE-model.
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Let ITt = nt(Ylj) denote the strain energy per unit volume of the undeformed state. For
a shell of thickness h the internal potential energy is then given by

(42)

with the midsurface element dF = Jd de 1 de 2 and the scalar-valued function /J. = ~'
which can be approximated, as usual in shell theory formulations, by /J. ~ 1. In eqn (42), ni
denotes strain energy per unit area of midsurface F. Like arbitrary hyperelastic materials,
rubber-like components can be modeled through the strain energy density nt. The most
popular model for incompressible materials is the well-known Mooney-Rivlin model given
in terms of the strain invariants I] and /2 by

(43)

with two material constants ('] and C2' For C1 = c and ('2 = 0 this model reduces to

(44)

describing the so-called neo-Hookean materials. As further important incompressible mod­
els we also note the Ogden-model

(45)

representing a function of principal stretches 1.1 with /1" and rI." as material constants and
the model due to Hart-Smith and Crisp (1967).

(46)

where nt is simulated in an exponential hyperbolic form, G, k] and k2 being the related
material constants. The Ogden model (45) requires the transformation of actual strains fij

in principal stretches and may be therefore in bending analysis computationally rather
expensive. The model has been used mainly in membrane shell elements [Wriggers and
Taylor (1990); Gruttmann and Tayler (1992)]. In the present FE-implementation the first
two models (43) and (44) will be considered.

To explain the derivation of 2D strain energy function we refer to the Mooney-Rivlin
model (43), where we replace /1 and /2 by eqn (37) in order to eliminate f33 by considering
eqn (38). This leads to

nt= c[(A-R)+c2 [2A+4D-(2+A)R-4Q] (47)

with the abbreviations A, D, ... , given in eqn (36). We now expand nt (47), according to
eqn (29), into a power series in e3 which we then introduce into eqn (42). Since all odd
terms in e3 vanish after thickness integration, we obtain as final result within the present
accuracy level

~f () h) 2 h' 4 Q

ill = J F [hn I+ 12 n; + 80 n;] dF,

h h I ffi ' () 2 d 4 'bwere t ere evant coe clents n l , IT I an IT; are gIven y

(48)
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Jr j = C1 (A -R)+c2 [2A +4D - (2+ A)R -4Q],

J 22 02 ~ 02 112

1ri = cl(A -R)+C2[(2-R)A +4D-(2+A)R-AR-4Q],
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(49)

(50)

(51 )

The abbreviations A, D, ... , involved in the above relations can be, by considering eqns
(21) and (29), evaluated from eqn (36). As examples. expressions for these variables up to
the second-order are given in Appendix I.

As starting point of the FE-implementation the principle of virtual work
(j* A = (j*A a + (j*Ai = 0 is finally to be introduced which can easily be constructed by means
of the equality (j* Ai = -M1i characterizing any hyperelastic material. We denote surface
loads per unit area of the undeformed midsurface F by p and line loads per unit of the
undeformed boundary C by 0". Both load actions are supposed to be conservative. Thus
the principle of virtual work is described by

(52)

With a slight modification of the first integral (p ---> J a:a p) the above relation can be used
also for deformation dependent loads p referring to the unit area of the deformed state F.
If attention is further restricted to pressure due to fluids then we have p = ±qD, with D) as
the unit normal of F and q the load intensity (per unit area F).

7. CONSTITUTIVE RELATIONS

Once the displacement variables and, by means of eqn (21), 3D strains fU are computed
in the FE-procedure, through-thickness distributions of the stress can be evaluated from
the constitutive relations to be established in this section. For this purpose, we again
distinguish between two cases. If the shell material is compressible, the Cauchy stress tensor
r lj is given by [Green and Zerna (1968)]

(53)

where the scalar valued functions

(54)

are closely connected with the strain energy density Jr'(. in the present case with eqn (43) or
(44), and

(55)

is a tensorial quality depending on ,';j through I) and gr>' In view of the definitions (10, II),
relation (53) takes the form

Our next goal is the evaluation of the variables gil' gil and B'J occurring in eqn (56) in terms
of the 3D strains ,';J' In view of eqn (18), giJ is given by gil = .tllj+2}';j, with which the
contravariant components gil can be constructed by means of the identity girgrJ = b~.

Alternatively. gIl may be calculated from the relations
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(57)

obtained on the basis of the identity

qfl = I t;fSleilk q .. g, :2 ' SJ. tk (58)

and the definition (14). From eqns (21), (37) and (55) we finally obtain for Bij

Relations established above for the evaluation of stresses can be easily adopted for incom­
pressible materials by setting I, = I. An essential distinction is, however, the fact that in
the case of incompressible materials the function P in eqn (54) becomes an unknown
variable as the value of the derivative ?IT;; N 1 is not determined at 13 = 1. For thin shell
structures, the transverse stresses ,13 in drdirection are much smaller than other stress
components so that they can be neglected without loss of accuracy. In this case P can be
pointwise determined by means of the condition r ll = 0 and then used for the calculation
of other stresses.

8 INCREME:-.ITAL FORMCLATION

For the development of nonlinear element matrices via an incremental-iterative solu­
tion strategy strongly nonlinear shell equations are to be transformed into an incremental
formulation. This is accomplished in the present development by a variational procedure.
As a detailed description of this procedure can be found in earlier works [e.g. Ba~ar and
Ding (1990)], we note here as essential result the incremental formulation of the principle
of virtual work. According to eqn (52) it is given by

(60)

where b implies a variation with respect to the variations 6V = V of the independent
displacements V and the notation (. -:.) = 6( ... ) and (.-. -:-) = 6 2

( .•. ) denote, respectively, the
first- and second-order variational terms. which can be constructed by the usual variational
approach. For instance we receive from eqn (49).

++ ++ ++ ++ + +
IJ (I () (I () () () IJ 0 0 0

IT i = ('I(A -R )+cc[(2-R)A +4D -(2+A)R -4Q -2AR]. (61)

Appendix 2 involves the other relevant results entering in eqn (60). Here it is noticed that

the variations Xi. ~ x and ax present primary variables to be approximated independently in
the FE-procedure.

To give a further example for the construction of variational equations we refer to the
first incompressibility conditions from Table 2 leading to
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(62)

which will be used in the FE-procedure for the evaluation of the shape function of I".
The linearization of the tangential stiffness matrix k, can be carried out simply by

replacing the geometrical variables of the fundamental state occurring in corresponding
relations with those of the undeformed state. For Mooney-Rivlin materials, it has been
proved that the stiffness matrix obtained by this linearization process corresponds exactly
to that of the classical shell theories [Ba~ar and Kratzig (1985)]

If (Eh .t ,~ ;; ;; ) c= ~-- H,/ip,..,, " .+4Gluyli.." dF
') I 'l./~ I pI i :X:<. , {n

{ I -v'

with

If Eh' .1 I .+ ---~ H xl'''' " ., . dF
12 I ') , "Ii I ,,,

t (-v-
(63)

(64)

jfPoisson's ratio v and Young's modulus E are selected as \' = 0.5 and E = 6 (CI +(2)'
In concluding this section it is worthy to remark that the kinematic model presented

in Section 3 can be combined with an arbitrary strain energy function represented in eqn
(60) by the second variation of the internal potential energy n,. The Mooney-Rivlin model
(43) used in this paper serves only as an example to demonstrate how such a coupling
between shell kinematics and material models can be achieved.

9. FI:"oIITE ELEMENT FORMULATION

The incremental formulation is transformed into a 4-node finite element according to
the isoparametric formulation. This model corresponds essentially to a displacement-based
model apart the independent approximations of constant shear strains y". Here, we shall
not deal with the standard FE-procedure, but solely summarize the relevant aspects of the
derivation.

Primary displacement quantities X', ; x and ax are interpolated by means of standard
t + +-

bilinear polynomials. We emphasize that the director d,(d1, d ,) is, in contrast to many
formulations [see Buchter et al. (1994)], not directly interpolated. Instead, Euler parameters
~ x are used as primary quantities and the related constraints (35) are considered. as

~ +~

variational equations, to construct the shape functions of d, and d ,. This provides a
uniform approximation of the inextensibility condition (17) over the element area.

To avoid shear locking, constant shear deformations are interpolated according to

assumed strain concept originally proposed by Dvorkin and Bathe (1984) and described in
detail in earlier works [Ba~ar et al. (1993): Ba~ar and Ding (l995a)]. It is noted that the
first·order terms ~'X3 need not a special treatment in this sense as are numerically stable.
Dependent stretching parameters;' and lA, are eliminated at the element level by means of
incompressibility conditions.

The element proposed for rubber-components is based on the linear kinematic
approach (u = 0) which provides sufficiently accurate results in the case of incompressible
structures without locking effects. It is however intended to extend this model to multilayer
model (layerwise model) which has been proved from earlier studies to be decisively
more predictive than single layer models on the basis of a higher-order displacement
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approximation when dealing with e.g. structures involving strongly dissimilar material
layers.

The second-order kinematic model of Section 3 has been transformed in an earlier
formulation [Ba~ar and Ding (1995)] into a similar finite element model for the analysis of
a compressible multilayered shell made of composite materials. The examples presented
there demonstrate that this model provides the consideration of both compressible and
incompressible shells within a refined approach.

10. NCMERICAL EXAMPLES

Extended numerical studies have been carried out to test the performance of the
numerical model proposed with respect to large strain analysis. Some examples have been
also analysed by classical finite-rotation elements on the basis of Hookean material for
comparison. For this purpose, the Poisson's ratio v and Lame's constant G have been
selected as v = 0.5 and G = 2(('1 + C2) for incompressible materials. The performance of the
present model will be now discussed on following examples. All these examples have been
analysed using the finite element based on the theoretical model SD-6 in Table I.

10.1. Unijcmn extension 0[" a cylindrical tuhe
We consider a circular cylindrical tube subjected to uniform extension in the longi­

tudinal direction (Fig. 3). If the extension ratio i' 2 in this direction is given as the load
condition, the extension ratios in other two direction can be obtained by means of the
incompressibility condition as

and the numerical results for the stresses in the longitudinal direction can be checked
by the analytical solution available in Green and Zerna (1968).

Note that r'J are physical components of the Cauchy stress tensor T'J . The analysis has
been performed for a 2 shell segment using a single element and considering both material

h

Initial geometry:
L = 10.0, r = 10.0
h=010

Mooney-Rivlin material:
c,= 4.0, C2 = 1.5
neo-Hookean material:
c, = 5.5, c2 = 0.0

Load condition:
uniform extension ratio
A2 in the longitudinal
direction

Deformed geometry:
R = A, r, H = A3 h
A, ,A3 - extension ratios
in 8', 8' direction

Fig. 3. Uniform extcnsions of a cIrcular cylindrical tube.
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o..1f-r-r-.---,-,----,-,--r--,-r-r.
1.0 1.2 1.4 1.6 1.8 2.0

load condition: extension ratio /"2

extension ratio /'" = /"3

0.6

0.4
- Analytical solution

0.2 -- FE - resu~ (both material models considered)

0.01~~E -, re~ul: (~~e~n ~a:al, "'a= 1)

1.0 1.2 1.4 1.6 1.8 2.0
ioad condition: extension ratio /"2

32

24

16

8

- Anaiytical solution
__ FE - resu~ (c, = 5.5, c2= 0.0)

-A-FE - resu~ (c, = 4.0, c 2 = 1.5)

-FE-resu~(E=33, v =0.5'/"3=1)

Fig. 4. Uniform extension of a cylindrical tube: load-response diagrams.

models given in Fig. 3. Numerical results shown in Fig. 4 are in full agreement with
the analytical solution and thus demonstrate the reliability of the algorithms proposed
particularly for the stress calculation. It can be observed that stresses r(22) are, in contrast
to the extension ratios )'2 = 1'3, influenced by the material models. Numerical results
obtained with the classical Hookean material are also plotted in Fig. 4 for comparison
showing clearly that the classical models [Ba~ar et al. (1993)] are not applicable to large
strain analysis.

Some other simple examples with existing solutions in literature, such as the simple
extension or simple shear of a solid, inflation of a cylindrical tube or a spherical membrane
under internal pressure etc., have also been analysed to check the reliability of the numerical
model proposed. Numerical results obtained for these simple problems were in excellent
agreement with the exact solutions.

10.2. Stretching ola square sheet with a circular hole
This problem has been analysed by several authors [see Ramm (1976) ; Parisch (1986) ;

Gruttmann and Taylor (1992)]. Due to the symmetry of the structure only one quarter of
the sheet is analysed by 64 four-node isoparametric elements (Fig. 5). Our numerical results
for the displacements plotted in Fig. 6 show excellent agreement with those of Ramm
(1976). The deformed configuration for the load factorl = 1.0 obtained in one loading step
and five iterations is given in Fig. 5 demonstrating clearly the large strains involved in the
present problem. Numerical results for the thickness stretching parameter I. are presented
in Fig. 6. It is interesting to note that the sheet thickness near the point B is not decreased
but slightly increased during the deformation process. This result suggests the existence of
compression stresses near the point B. In Fig. 7, the distributions of the thickness stretching

L

D

,B A
+------ L ----+

Undeformed geometry (I = 0.0) Deformed geometry (f = 1.0)

Geometry:
L = 10, R = 3, thickness h = 1
Mooney-Rivin material:
c, = 25, C2 = 7
Load: q = 90.0

Fig. 5. Stretching of a square sheet with a circular hole: geometry and deformed configuration.
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0
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U 0
~

Ramm(1976) "0
Cll '<t

~xl
0 c::i

0 ....J

Cl ~x~ C\I
c::i

A -~Xt
~+---.---.---..--,..---r--.----,.--,....-"""::¥-.....--r--.---.

4 6 8 10 12 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Displacement Thickness stretching A.

Fig. 6. Stretching of a square sheet: load-deformation diagrams.
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Undeformed state (f =0.0): Thickness stretching iI. at
iI. = 1.0 at all points the deformed slate (f = 1.0)

Fig. 7. Sheet with a circular hole: distrihutions of the thickness stretching parameter )..

Stress

Distribution of the stresses t<11> (f = 1.0)700500 600400100 200 300o·100

Fig. 8. A square sheet with a circular hole: load-stress diagrams and the stress distribution.

parameter ;. are plotted to demonstrate this unusual effect. For an easy physical interpret­
ation, the stresses evaluated originally with respect to convective coordinates are trans­
formed into those referring to the global Cartesian coordinates (,<II>, ,<22». The cor­
responding results plotted in Fig. 8 confirm the existence of compression stress ,<22> near
the point B. We note that the stresses ,<II) satisfy zero stress boundary condition at the
point B. To test the accuracy of stress results the stress resultant vectors of the deformed
boundary surface Xl = 0 and Xl = L have been evaluated and compared with the acting
load resultant. This comparison has demonstrated the numerical error to be almost neg­
ligible «0.5%).

I0.3. Hyperbolic shell subjected to nearly concentrated loads
A hyperbolic shell made of hyperelastic material is subjected to four pairs of locally

distributed vertical loads (Fig. 9). The deformation of this shell structure is characterized
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Discretization: for one eighth of the structure

Loads: locally distributed vertical loads

q= f·p. p= 1.0

2 J (e2- L/)2r(6 ) = r/ 1 + --­
4.5

L t =6.0, h =0.5.
ra =5.0, r/ =3.0

Geometry:

Material constants:
neo - Hookean Material

• C, = 5.5. C2 = 0.0
Mooney - Rivlin Material
C, =4.0. C2 = 1.5

Fig. 9. Hyperboloidal shell under four pairs of locally distributed vertical loads.
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Fig. 10. Hyperboloidal shell: load·response diagrams.

by a combined membrane and bending deformations. Due to the symmetry of the structure
and loads, only one eighth of the shell is discretized by 24 x 24 four-node isoparametric
elements. Some characteristic results are given in Fig. 10 in the form of load-response
diagrams and compared with those obtained with a Kirchhoff-Love type model [Ba~ar and
Ding (1996)]. Due to relatively large shell thickness results obtained for the displacement
f1X' show significant discrepancies for large load levels. On the contrary, the stretching
parameter ;. as well as the middle surface stresses are practically not affected by the
inclusion of shear deformations. Compared with the Kirchhoff-Love model, the present
shear-deformation model is computationally more efficient due to the low-order interp­
olation polynomials used. The undeformed and deformed configurations given in Fig.
12 demonstrate clearly the large displacements and rotations involved in this example.
Distributions of the Cauchy stresses (8' = 0) and the thickness stretching parameter ;,
at the load levelf = 10.0 andf = 20.0 are plotted in Fig. II for some essential sections. For
the part of the structure far away from the locally distributed loads, the stress r"2; (8' = 0)
and the thickness stretching) possess a nearly uniform distribution along the circumferential
direction. On the contrary. stress concentrations due to the locally distributed loads can be
observed clearly at the section 02 = 0 while the zero stress boundary condition is approxi­
mately satisfied along the unloaded parts of the boundaries. The distributions of the
thickness stretching given in Fig. II show great changes of the shell thickness near the loads
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through thickness stretches A.
(f= 10.0)

/
10.35�'----

/

11 .10 ~:::=::::::::::::;;?::

~'
Xl

meridional Cauchy stresses T<22>(83
= 0)

(f= 10.0)

H=Ah

t5

through thickness stretches A.
(f = 20.0)

-Y.- _

/1'\
I

I

~,.>

meridional Cauchy stresses T<22>(83• 0)

(f = 20.0)

Fig. II. Hyperboloidal shell: distributions of the stresses T "(6' = 0) and the thickness stretching
parameter i ..

for higher load level which confirms the significant role of transverse normal strains in the
large strain analysis.

II. CONCLUSIONS

In the present study a general applicable kinematic model has been presented for large­
strain and finite-rotation analysis of arbitrary shell structures. This model has th::n been



Large-strain shell analysis 1705

initial unloaded state deformed configuration deformed configuration
(f = 0) (f = 10.0) (f = 20.0)

Hyperboloidal shell: undeformed and deformed configuration
Fig. 12. Hyperboloidal shell: undeformed and deformed configurations.

coupled with the strain energy density of rubber-like materials and transformed into an
isoparametric four-node finite element. By means of extended numerical studies achieved
by this model we may state the following concerning different aspects.

11.1. Theoreticalformulation
• The kinematic model proposed enables to consider compressible and incompressible

shells within a unified formulation. In the present study the performance of this model
is demonstrated on the example of rubber-like components characterized by incom­
pressibility. Its suitability for the analysis of compressible shells has been however
shown in an earlier study [Ba~ar and Ding (1994)] on the example of composites. This
model involves a number of simplified models (see Section 3) which provides a great
flexibility in large-strain analysis.

• No numerical difficulties have been observed due to the inclusion of the incompressible
condition. On the contrary this constraint renders the transverse normal strains numeri­
cally stable and thus the analysis can be carried out by means of a linear kinematic
model. In dealing with compressible materials the kinematic model should however
involve at least a quadratic stretching parameter to ensure numerical stability unless
another stabilisation procedure e.g. enhanced FE-formulation [Btichter et al. (1994)]
is adopted.

• The accuracy of numerical results produced for stresses have been checked on a number
of simple examples with available analytical solutions. Finite element formulations
available in literature mostly present numerical results for displacements but not for
stresses. Accordingly, in dealing with complex examples corresponding results could
be checked only in some cases through global equilibrium considerations.

11.2. FE~formulation

• Finite element developed is lock-free, insensitive to shape distortions and able to
deal with arbitrarily strong nonlinear situations. Deformations connected with very
large thickness changes and rotations could be analysed even on complex geometries
without numerical difficulties.
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• For infinitesimal strains and for Poisson's ratio \' = 0.5 the present material model
reduces to the classical Hookean model. Large strain analysis can however hardly be
achieved by means of classical finite-rotation models [Ba~ar and Ding (1990); Ba~ar et
al. (1992)] on the basis of a Hookean material model.

• On the examples investigated up to now with thickness to length ratios h/L < 1/10 no
significant discrepancies have been observed between the results of the present model
and those produced by its Kirchhoff-Love type counterparts [Ba~ar and Ding (1996)].
We however find the present model more advantageous since it can easily be extended
to multilayer-models (layerwise model) which have been proved to achieve arbitrarily
accurate results even for extremely unfavourable conditions, e.g. 3D structures [Ba~ar

et al. (1993)]. This advantage is evidently due to transverse shear strains involved in
the present model while Kirchhoff-Love type models are in this sense not predictive at
all.
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APPENDIX I

Abhreriations used/or strain inwrialll.\ and internal potelllial enery.!'

Strain inrarianls
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) : terms to be neglected for thin shells.
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APPENDIX 2

Incremental variables used in {he nonlinear analysis
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